Algebra II
 10-7a
 Compound Interest

Compound Interest Formula

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

$A=$ Amount (Final) $r=$ rate
$P=$ Principal $\quad t=$ time (years)
$\boldsymbol{n}=$ number of
compounds/year.
*2) If $\$ 1100$ is invested at 2.4% interest $n=12$
*2) If $\$ 1100$ is invested at 2.4% interest compounded monthly, how long will it take the investment to triple?

$3300=1100\left(1+\frac{0.024}{12}\right)^{12 t}$
$\frac{3300}{1100}=\frac{1100(1.002)^{12 t}}{1,00}$
$\ln 3=\ln 1.002^{12 t}$
$\ln 3=\frac{12 t \ln 1.002}{12 \ln 1.002}$
$\frac{\ln 3}{12 \ln 1.002} \frac{12 \ln 1.002}{12}$

*1) $\$ 850$ is invested at 6% interest compounded quarterly for 15 years. How much is the final investment worth?

$$
\begin{aligned}
& A=P\left(1+\frac{r}{n}\right)^{n t} \\
& A=850\left(1+\frac{.06}{4}\right)^{405)} \\
& A=850(1.015)^{60} \\
& A=2076.74
\end{aligned}
$$

Assignment:
Handout

